CONGENITAL HEART EMERGENCIES: KEEPING IT SIMPLE
Helena Wang-Flores, DO, MHSA
Objectives

• Focus on hypoplastic left heart
• Overview of the 3 stage palliation surgery
• Understand the complications that can occur at each stage and how to manage

Case 1

• 5 month old CC: Cyanosis
• HR: 110, RR: 42, BP: 84/Doppler, SpO2: 60%, Temp: 36.7 C
• HLHS, s/p BT shunt with LPA augmentation and PDA ligation
But what does that mean?

Breaking it all down

- Where do they get their pulmonary blood flow?

- Where do they get their systemic blood flow?

- 1V or 2V?
Hypoplastic Left Heart Syndrome: HLHS

- 960 babies each year
- Unknown cause
- The *left ventricle* is underdeveloped and too small.
- The *mitral valves* is not formed or is very small.
- The *aortic valve* is not formed or is very small.
- The ascending portion of the *aorta* is underdeveloped or is too small.
- May have ASD.

Hypoplastic Left Heart Syndrome (HLHS)
3 stage palliation surgery

1. Norwood

2. Bidirectional Glenn

3. Fontan
Norwood (BT Shunt) – sats 75-85%

Post-operative changes
- Uncontrolled PBF
- Re-constructed aortic outflow tract
- Fluid balance sensitive
- Widened pulse pressures
- Tenuous coronary circulation
- Single ventricle for all circulation

Norwood (Sano Shunt)
Norwood (Sano Shunt)

- Post-operative changes
 - Direct PA communication with RV
 - Uncontrolled PBF
 - Neo-aortic reconstruction
 - Higher diastolic pressures
 - Better coronary perfusion

Case 1: Exam

- Cyanotic, no acute distress.
- Comfortable work of breathing, good air entry bilaterally.
- Right ventricular heave. Irregular rhythm with a normal S1 and single S2. There is a grade I/VI continuous murmur at the LUSB
- Abdomen is soft, nontender, and non-distended. The liver is palpated 1.5 cm below the right costal margin.
- No clubbing or edema. Warm and well perfused with 3+ pulses.
ED Presentation

Differential Diagnosis

- Respiratory infection
 - Low PVO2
- Sepsis
 - Low SVR
 - Low SVO2
 - Increased demand
- Shunt stenosis
- Anemia
Hypoxic

- Look for underlying cause
 - Pulmonary edema or infiltrate
 - Decreased pulmonary blood flow
 - Mixed venous desaturation

Chest X-ray

Pulmonary vascular congestion Decreased pulmonary blood flow
What’s happening?

- BT Shunt narrowing
- At risk for shunt occlusion
- Can occur at any time, though more at risk when older and outgrowing shunt

What to do for Shunt Failure?

- Impending cardiac emergency, call on arrival
- Oxygen
 - Goal oxygen saturations >70%
 - Supplement oxygen to assist in maintaining oxygen saturation
- Heparin may be considered
What about oxygen therapy?

- Limit O2 therapy for cyanosis
- Maintain sats 75-85%
 - Use blended O2 with range of up to FiO2 0.4

- If sats >85% - O2 is vasodilator
 - ↓PVR → ↑PBF → Pulmonary edema and circulatory shock

What to do for resuscitation?

- Limit oxygen (remember: relative uncontrolled PBF)
- Hemoglobin
- Auscultate for murmur:
 - Continuous murmur at RUSB (? BT shunt)
 - Systolic murmur at RLSB/ LUSB (Sano shunt)
- Fluid balance:
 - Palpate liver
 - +/- rales and CXR to evaluate for CHF
 - Reverse dehydration
- Reverse acidosis
• PVR affects flow in the BT shunt
• Forward flow in both systole and diastole = continuous murmur
• Low PVR results in more flow through the shunt rather than to the body AND CORONARIES
• Higher alveolar pO2 = less flow to body
• ALWAYS TALK TO A CARDIOLOGIST BEFORE OXYGEN ADMINISTRATION TO A CHILD WITH A BT SHUNT

• PVR does not affect flow through a RV to PA shunt (aka Sano).
• Lower baseline sats but less volatile cardiac output & coronary flow
 – 2007 multi center trial with improved survival to 12 months
 – Fewer “death” spells
• Still talk to a cardiologist about oxygen

Stage 2: Bidirectional Glenn
Stage 2: Hemi Fontan

Case 2

- 10 year old CC: Diarrhea, fever, abdominal pain
- HR: 110, RR: 24, BP: 95/52, SpO2: 96%, Temp: 37.9 C
- HLHS s/p Fontan
Stage 3: Fontan

Hemi Fontan Fontan

Case 2:

- **HEENT:** *Mucous membranes are dry.* No tonsillar exudate. Oropharynx is clear. No adenopathy.
- **Cardiovascular:** Normal rate, regular rhythm and S1 normal. S2 single. No murmur.
- **Pulmonary/Chest:** No respiratory distress. Good air entry.
- **Abdominal:** Full and soft. He exhibits no distension. Bowel sounds are increased. There is tenderness.
- **Skin:** Skin is warm. Capillary refill takes *3 to 5 seconds.*
Chest X-ray

No infiltrates
Sternotomy wires
Pacer

Labs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>132 - 145 mmol/L</td>
<td>137</td>
<td>136</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.3 - 5.0 mmol/L</td>
<td>4.3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Chlora</td>
<td>98 - 108 mmol/L</td>
<td>106</td>
<td>106</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>CO2</td>
<td>20 - 28 mmol/L</td>
<td>21</td>
<td>23</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Urea Nitrogen</td>
<td>5 - 20 mg/dL</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.40 - 0.90 mg/dL</td>
<td>0.80</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>10 - 135 mg/dL</td>
<td>83</td>
<td>77</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>6.4 - 10.4 mg/dL</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>5.8 - 8.0 g/dL</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>3.2 - 4.2 g/dL</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>5 - 50 IUL</td>
<td>163 (Hi)</td>
<td>98 (Hi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td><50 IUL</td>
<td>72 (Hi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>70 - 300 IUL</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilirubin, Total</td>
<td>0.1 - 1.0 mg/dL</td>
<td>0.9 (Hi)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>4.5 - 13.5 K/U</td>
<td>4.5</td>
<td>6.4</td>
<td>7.8</td>
<td>12.3</td>
</tr>
<tr>
<td>HGB</td>
<td>12.5 - 16.0 g/dL</td>
<td>14.8</td>
<td>13.4</td>
<td>12.3 (Hi)</td>
<td>12.3 (Hi)</td>
</tr>
<tr>
<td>HCT</td>
<td>36.0 - 49.0 %</td>
<td>44.9</td>
<td>39.5</td>
<td>37.0</td>
<td>36.9</td>
</tr>
<tr>
<td>PLT</td>
<td>150 - 400 K/U</td>
<td>256</td>
<td>261</td>
<td>261</td>
<td>216</td>
</tr>
<tr>
<td>RBC</td>
<td>4.50 - 5.50 M/L</td>
<td>5.53 (Hi)</td>
<td>5.01</td>
<td>4.85</td>
<td>4.82</td>
</tr>
<tr>
<td>MCV</td>
<td>76.0 - 95.0 fl</td>
<td>79.6</td>
<td>76.8</td>
<td>76.3</td>
<td>75.7</td>
</tr>
<tr>
<td>MCH</td>
<td>24.0 - 32.0 pg</td>
<td>26.9</td>
<td>26.7</td>
<td>25.4</td>
<td>25.5</td>
</tr>
<tr>
<td>MCHC</td>
<td>32.0 - 36.0 g/dL</td>
<td>33.9</td>
<td>33.2</td>
<td>33.2</td>
<td>33.7</td>
</tr>
<tr>
<td>RDW</td>
<td>11.5 - 15.0 %</td>
<td>13.9</td>
<td>14.4</td>
<td>15.7 (Hi)</td>
<td>15.3 (Hi)</td>
</tr>
<tr>
<td>MPV</td>
<td>9.0 - 12.2 fL</td>
<td>10.2</td>
<td>9.8</td>
<td>9.9</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Fontan Post-op

- Pulmonary blood flow is passive
- Cyanosis
 - Increase in PVR
 - Decrease in SVR
- Dehydration
 - Non fenestrated: decrease perfusion
 - Fenestrated: more cyanotic due to shunting

Fontan Other Considerations

- Fluid resuscitation
- Anasarca due to protein losing enteropathy
- Increase risk of arrhythmias and thromboembolic events.
A dry Fontain is a dead Fontan

- Be worried when Fontan’s are at risk for dehydration
- When dehydrated, boluses of 20mL/kg and repeated are ok

What information does cardiology require?

- 4 extremity BP’s, weight %iles
- H&P
 - Murmurs
 - Organomegaly
 - Pulses
 - ECG
 - Labs, CXR findings, saturations
Take home pearls

- Oxygen can kill
- A dry Fontan is a dead Fontan

How do you reach Peds Cardiology?

REFERRALS & CONSULTATIONS
M-LINE
800-962-3555
Acknowledgements

- Stacey Noel, MD
- Courtney Strohacker, MD

Thank you