Bacterial Meningitis Overview

- Definition: Infection-mediated inflammation of the pia, arachnoid, and subarachnoid space
- Aseptic versus bacterial
- 4% mortality in children
- Neurologic sequelae in survivors

Impact of PCV7 on Pneumococcal Disease

- 97% efficacy in preventing one of 7 serotypes
- 89% efficacy in preventing any of the remaining 90 serotypes
- Prevention of other pneumococcal disease
- Most positively impacted group was children less than 2 years old

Historical Background

- Epidemiology has changed in the last 20 years
- Before 1988 Hib accounted for 70% of bacterial meningitis in children younger than 5
- Now most common, Streptococcus pneumoniae
 - PCV7 developed
 - Routinely administered to children younger than 23 months, and children 24-59 months if high risk

Learning Objectives

- Identify current epidemiology of bacterial meningitis in various age groups
- Implement an evidence based approach to empiric therapy in suspected bacterial meningitis

Impact of PCV7 on Pneumococcal Disease

- 97% efficacy in preventing one of 7 serotypes
- 89% efficacy in preventing any of the remaining 90 serotypes
- Prevention of other pneumococcal disease
- Most positively impacted group was children less than 2 years old
Emerging Serotypes

- Nonvaccine serotypes 19A and 22F have been on the increase
- PCV13 was licensed in 2010

Epidemiology of Bacterial Meningitis

- Streptococcus pneumoniae is the most common cause of bacterial meningitis in children
 - 1-3 months: Strep agalactiae, gram neg rods, strep pneumoniae
 - 3m-3years: S. pneumoniae, N. Meningitidis, S. agalactiae
 - 3-10 yo: S. pneumoniae, N. Meningitidis
 - 10-19 yo: N. Meningitidis, S. pneumoniae

History and Physical Examination

- Findings in older versus younger children
- Physical examination for shock, neurologic deficits, cutaneous findings, bulging fontanelle
 - 73% had been febrile within 72 hours of presentation

Laboratory Evaluation

- Obtain CSF and blood cultures early
- White blood cell count
- CSF glucose, protein, cell count and differential, gram stain, viral testing
- BMP, glucose, coagulation factors

Effect of Pre-treatment on CSF Findings

- Sterilization of CSF was most rapid in children with meningococcal meningitis
- WBC count and neutrophil count are the least likely to normalize

Lumbar Puncture

- Herniation
 - unlikely
- CT scan before LP
 - indications
Bacterial versus Aseptic Meningitis

- BMS
- Positive CSF Gram stain
- CSF Protein 80mg/dL or greater
- CSF neutrophils 1000cells/μL or greater
- Peripheral ANC 10,000 cells/μL or greater
- Seizure before or at time of presentation
- Rapid detection of enterovirus by PCR
- Procalcitonin

Empiric Therapy

- Monitoring and stabilization
- Obtain CSF culture but do not wait to treat in shock state
- IV antibiotics

Empiric Therapy

- Younger than 1 month:
 - Coverage for S. agalactiae, E. Coli, Listeria
 - Ampicillin plus cefotaxime or aminoglycoside
 - Empiric Acyclovir
 - Older than 1 month:
 - Coverage for S. pneumoniae and N. meningitidis
 - Vancomycin plus ceftriaxone or cefotaxime

Empiric Therapy

- A word on steroids...

Summary

- S. pneumoniae is still the most common agent of bacterial meningitis in children outside of the neonatal period
- PCV7 vaccine has caused a decline in pneumococcal meningitis, but there is an increase in non-PCV7 serotype meningitis
- No single test is diagnostic
- BMS can be used to identify patients at low risk for bacterial meningitis
- The role of corticosteroids is unclear

Hyperglycemic Crisis

Introduction

- Hyperglycemic crisis:
 - Includes DKA and HHS
 - Extreme metabolic derangements
- Diabetes since 2010 effects 285 million adults worldwide and estimates health expenditures of $376 billion
- Incidence of Type 1 diabetes is increasing globally in children <5 years old
- There is an earlier age of onset of type 2 diabetes

Prevalence of DKA at initial diagnosis was greater than 25%

Average duration of hospital stay is 3.6 days
- Involves ICU care, significant morbidity, and mortality
- Mortality in both adults and children
- Improved understanding, prevention, and advances in management has resulted in declining death rates

Diagnostic Criteria for DKA and HHS

- DKA
 - Blood glucose >250mg/dL
 - Moderate ketonuria
 - Arterial pH of <7.3 and bicarbonate <15mEq/L
- HHS
 - Diabetic patient with altered mental status
 - Glucose >600 mg/dL
 - No ketonuria
 - pH typically >7.3 and bicarbonate >15 mEq/L
 - Serum osmolality >320 mOsm/kg

Pathophysiology of DM

- Insufficient endogenous insulin resulting in hyperglycemia
- Type 1 DM = autoimmune destruction of pancreatic beta cells = absolute insulin deficiency
- Type 2 DM = progressive insulin resistance and defects in insulin secretion = relative insulin deficiency = requires exogenous insulin

Risk Factors for Hyperglycemic Crisis

- Young patients without health insurance
- Age <2 years
- Ethnic minority status
- Infection
- Inadequate exogenous insulin
- Low BMI
- Cardiac, psychological, GI, Neurologic, Toxicologic, Pharmacologic, Other

Clinical Presentation

- History
- ROS
- Physical examination
Diagnostic Testing
- First critical step: bedside glucose
- Screening ECG
- Urine ketones, BMP, lactic acid, venous pH, serum osmolality, beta-hydroxybutyrate
- Other tests based on clinical circumstance

Goals of Management of Hyperglycemic Crisis in Adults
- Uncover and manage the underlying cause
- Replace fluids
- Correct acidosis
- Improve mental status
- Optimize renal perfusion
- Replete electrolytes

Fluids and Sodium Management
- Volume resuscitation: focus on hydration status, sodium correction(factor), urine output
- Special considerations for pediatric and elderly populations

Insulin in Treatment
- Bedside glucose checks hourly initially, every 1-2 hours while on insulin drip
- Turn off any subcutaneous insulin pumps
- IV insulin infusion of 0.14 units/kg/h
 - Consider bolus if glucose does not decrease in the first hour by 10%
 - Rate of glucose decrease should be 50-75 mg/dL/hr
 - Switch fluids/insulin overtime

Electrolytes to Consider
- Potassium
 - Dehydration and Insulin therapy can cause a total body depletion of potassium
 - Maintain a serum potassium between 4-5 mEq/L
 - If K<3.3 then add 20mEq K to normal saline bolus
- Bicarbonate
 - No sustained benefit
- Phosphate
 - Not recommended

Resolution of Hyperglycemic Crisis
- For DKA:
 - Blood glucose<200 mg/dL + 2 of the following: serum bicarbonate>15 mEq/L, venous pH>7.3, calculated anion gap <12mEq/L
- For HHS:
 - Normalized serum osmolality, resolution of vital sign abnormalities, restored mentation
Conclusion

- Hyperglycemic crisis demands early recognition
- We in the ED are at the forefront of treatment
- An organized approach to hyperglycemia, fluid balance, electrolyte abnormalities, and normalizing acid-base status favors improved outcomes

Introduction

- Definition of Fever: Temperature greater than 38 degrees C or 100.4 F
- Early post-operative fever is usually noninfectious
- Classic W’s of postoperative fever has fallen out of favor
- Timing of the fever after a procedure is important: immediate, acute, subacute, and delayed
- 90% of fevers occurring by the 5th day post op have an identifiable source
- Most common source at 5 days postop: wound infection>UTI>pneumonia

Inflammation and Healing

- Immediate postoperative fever = during the procedure or up to 1 hour following it
- Caused by release of inflammatory mediators which increase capillary permeability and are healing responders
- Severity of the procedure in terms of extent of soft tissue trauma leads to release of IL-6 which results in fever
- Usually a benign course with resolution of fever

Emergent Causes of Early Postoperative Fever

- Necrotizing Soft-Tissue Infections:
 - Invasive: necrotizing fasciitis, clostridial gas gangrene, fournier gangrene, streptococcal cellulitis
 - Present within hours to days of initial procedure
 - Prior to surgery risk factors
 - Broad spectrum antibiotics and early surgical debridement is the key to lower morbidity and mortality

Emergent Causes of Early Postoperative Fever

- Pulmonary embolism:
 - Associated with a low grade temp<38.3C
 - Short lived fever
Emergent Causes of Early Postoperative Fever

- Anastomotic leak/Intra-Abdominal Abscess
 - Look for in fever and abdominal pain following an intra-abdominal procedure
 - Signs/Symptoms
 - Can present within 1 week up to several months
 - Requires broad spectrum antibiotics and prompt surgical consultation

- Alcohol withdrawal:
 - Broad spectrum from tremulousness to delirium tremens
 - Up to 1/3rd may have no infectious source
 - Treat with benzodiazepines in accordance with the CIWA scale

- Adrenal Insufficiency
 - Primary versus secondary
 - Secondary causes include exogenous steroids or endogenous steroids by tumors
 - Treatment: supportive care, hydrocortisone 100mg IV q6, and treatment of the underlying problem such as sepsis

- Malignant Hyperthermia
 - Results from inhaled anesthetics, muscle relaxants, other drugs
 - Involves derangement of calcium in skeletal muscle
 - Hypermetabolic state = multiorgan dysfunction and failure
 - Treatment is with supportive care and dantrolene

- Urinary Tract Infection
 - Most common hospital acquired infection
 - Presents 3-5 days after surgery
 - Risk factors include prostate surgery, spinal anesthesia, anorectal surgery
 - Organisms include E. Coli, Klebsiella, Enterobacter, Pseudomonas, and Serratia

- Surgical patients are all at increased risk for postoperative pneumonia
 - Risk factors include mechanical ventilation, aspiration
Emergent Causes of Early Postoperative Fever

- Catheter-related bloodstream infections
 - Use of catheters can increase bloodstream infections and insertion site specific infections
- 4 mechanisms:
 - Migration of organisms from the skin
 - Direct contamination by hands or fluid
 - Hematogenous spread
 - Contamination of infusate
- Consider appropriate antibiotics to cover Staph

Infected Prosthetics

- Orthopedic hardware, VP shunts, abdominal mesh, vascular grafts
- Can occur weeks to years after the procedure
- Direct inoculation of surgical site or hematogenous spread

Clostridium difficile Infection

- Occurs after administration of antibiotic
- Transmission via fecal oral route
- 20-50% of hospitalized patients are colonized
- Toxic megacolon is a surgical emergency
- Treatment is fluid resuscitation and antibiotics

Summary of Postoperative Fever Management

- Consider degree of fever and timing of onset
- Tailor work up to individual case
- Obtain early consultation with the operative team
- Definitive treatment via source control
- Administer antibiotics promptly

Bleeding and Coagulopathies in Critical Care

Introduction

- Definition of coagulopathy
 - The blood’s ability to clot is impaired or thrombotic state is present
 - Peripheral blood smear can be a vital tool
 - If it is not a response to a therapeutic agent then evaluate the pattern of bleeding
 - Avoid correction with blood product unless clinically bleeding or a surgical procedure is needed
Major Bleeding
- In acute traumatic coagulopathies:
 - 1:1 or 1:2 transfusion of FFP and PRBC's
 - Incidence of transfusion related acute lung injury and ARDS is increased
- Studies being conducted on use of factor concentrates
 - Tranexamic acid: acts as an antifibrinolytic agent
 - Administer in patients with major bleeding after trauma, within 3 hours, improves survival

Hemostatic Support for Invasive Procedures
- No supportive evidence for the use of FFP to correct abnormal coagulation screen before a procedure
- If prothrombin ratio is less than 1.5, you may proceed with central/arterial catheter insertion

Disseminated Intravascular Coagulation
- Definition: an acquired syndrome with activation of coagulation with loss of localization
 - Similar to those with end stage liver disease
- Can be thrombotic state or bleeding state
- Sepsis is the most common cause
- Up regulation of tissue factor
- Treatment: manage underlying cause

Thrombocytopenia
- Due to decreased production, increased destruction of platelets, or splenic sequestration
 - Platelet threshold of 10,000 in stable condition
 - 50,000 if actively bleeding
 - 100,000 if high risk for CNS bleeding
- Transfuse HLA-matched platelets if available

Post-transfusion Purpura
- Platelet specific alloantibody in the recipient which reacts with donor platelets and destroys them
- Seen in multiparous women sensitized during pregnancy
- Treatment is with IVIG, steroids, and plasmapheresis

Thrombotic Microangiopathies
- Includes TTP, HUS, HELLP syndrome
 - TTP is a deficiency in ADAMTS13=persistence of von Willebrand factor=leads to spontaneous platelet aggregation
 - Treatment is with early plasmapheresis
 - Medical emergency, 90% mortality if untreated
Liver Disease

- Most hemostatic proteins are synthesized in the liver
- Acute alcohol intake inhibits platelet aggregation
- Cholestatic liver disease = reduced absorption of lipid soluble vitamins = reduced amount of factors II, VII, IX, X
- In chronic liver failure coagulation is rebalanced

Renal Disease

- Uremic bleeding presents with ecchymosis, purpura, epistaxis, puncture site bleeding
- Dialysis improves platelet function

Bleeding Associate with Antithrombotic Therapy

- Stop the antithrombotic medication
- Consider recombinant activated factor VII and prothrombin complex concentrate (PCC)
- May be a role for activated charcoal